next up previous
Next: About this document Up: STATISTICAL LEARNING METHODS IN Previous: STATISTICAL LEARNING METHODS IN

References

1
V. Kharitonov, ``Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,'' Differential Equations, vol. 14, pp. 1483-1485, 1979.

2
C. T. Abdallah, D. Docampo, and R. Jordan, ``Necessary and sufficient conditions for the stability of polynomials with linear parameter dependencies,'' International Journal of Robust and Nonlinear Control, vol. 1, pp. 69-77, 1991.

3
J. Cieslik, ``On possibilities of the extension of Kharitonov's stability test for interval polynomials to the discrete-time case,'' IEEE Trans. Auto. Control, vol. AC-32, pp. 237-138, 1987.

4
C. Hollot and A. Bartlett, ``Some discrete-time counterparts to Kharitonov's stability theorem for uncertain systems,'' IEEE Trans. Auto. Control, vol. AC-31, pp. 355-356, 1986.

5
F. Kraus, B. Anderson, E. Jury, and M. Mansour, ``On the robustness of low-order schur polynomials,'' IEEE Trans Auto. Control, vol. AC-35, pp. 570-577, 1988.

6
F. Kraus, M. Mansour, and B. Anderson, ``Robust schur polynomial stability and Kharitonov's theorem,'' in Proceedings 26th IEEE CDC, (Los Angeles, CA), pp. 2088-2095, 1987.

7
A. Bartlett, C. Hollot, and H. Lin, ``Root locations of an entire polytope of polynomials: It suffices to check the edges,'' Mathematics of Contol, Signals and Systems, vol. 1, pp. 61-71, 1987.

8
L. Jaulin and E. Walter, ``Set inversion via interval analysis for nonlinear bounded-error estimation,'' Automatica, vol. 29, no. 4, pp. 1053-1064, 1992.

9
E. Walter and L. Jaulin, ``Guaranteed characterization of stability domains via set inversion,'' IEEE Trans. Aut. Control, vol. 39, no. 4, pp. 886-889, 1994.

10
M. Vidyasagar, A Theory of Learning and Generalization: With applications to neural networks and control systems. London: Springer Verlag, 1997.


Greg Heileman
Wed Apr 1 15:25:21 MST 1998