Next: About this document
Up: STATISTICAL LEARNING METHODS IN
Previous: STATISTICAL LEARNING METHODS IN
References
- 1
-
V. Kharitonov, ``Asymptotic stability of an equilibrium position of a family of
systems of linear differential equations,'' Differential Equations,
vol. 14, pp. 1483-1485, 1979.
- 2
-
C. T. Abdallah, D. Docampo, and R. Jordan, ``Necessary and sufficient
conditions for the stability of polynomials with linear parameter
dependencies,'' International Journal of Robust and Nonlinear Control,
vol. 1, pp. 69-77, 1991.
- 3
-
J. Cieslik, ``On possibilities of the extension of Kharitonov's stability
test for interval polynomials to the discrete-time case,'' IEEE Trans.
Auto. Control, vol. AC-32, pp. 237-138, 1987.
- 4
-
C. Hollot and A. Bartlett, ``Some discrete-time counterparts to Kharitonov's
stability theorem for uncertain systems,'' IEEE Trans. Auto. Control,
vol. AC-31, pp. 355-356, 1986.
- 5
-
F. Kraus, B. Anderson, E. Jury, and M. Mansour, ``On the robustness of
low-order schur polynomials,'' IEEE Trans Auto. Control, vol. AC-35,
pp. 570-577, 1988.
- 6
-
F. Kraus, M. Mansour, and B. Anderson, ``Robust schur polynomial stability and
Kharitonov's theorem,'' in Proceedings 26th IEEE CDC, (Los Angeles,
CA), pp. 2088-2095, 1987.
- 7
-
A. Bartlett, C. Hollot, and H. Lin, ``Root locations of an entire polytope of
polynomials: It suffices to check the edges,'' Mathematics of Contol,
Signals and Systems, vol. 1, pp. 61-71, 1987.
- 8
-
L. Jaulin and E. Walter, ``Set inversion via interval analysis for nonlinear
bounded-error estimation,'' Automatica, vol. 29, no. 4, pp. 1053-1064,
1992.
- 9
-
E. Walter and L. Jaulin, ``Guaranteed characterization of stability domains via
set inversion,'' IEEE Trans. Aut. Control, vol. 39, no. 4,
pp. 886-889, 1994.
- 10
-
M. Vidyasagar, A Theory of Learning and Generalization: With applications
to neural networks and control systems.
London: Springer Verlag, 1997.
Greg Heileman
Wed Apr 1 15:25:21 MST 1998